Home > News > Remote sensing: Bulk photovoltaic effect exploited in 2-D trilayered hybrid ferroelectric

Remote sensing: Bulk photovoltaic effect exploited in 2-D trilayered hybrid ferroelectric

wallpapers News 2020-12-24
Schematic illustration of the strategy.

Polarized light detection plays an important role in remote sensing, near-field imaging, communication, and high resolution detectors. However, it remains a great challenge to achieve highly polarization-sensitive photodetection with large polarization ratio base on traditional semiconducting materials due to the limitation of material/device structural anisotropy.

Ferroelectric materials, characterized by switchable electric polarization, inherently feature a highly light-polarization dependent photoresponse (known as bulk photovoltaic effect, BPVE), presenting as promising alternatives in this portfolio.

In a study published in Polarized light detection plays an important role in remote sensing, near-field imaging, communication, and high resolution detectors. However, it remains a great challenge to achieve highly polarization-sensitive photodetection with large polarization ratio base on traditional semiconducting materials due to the limitation of material/device structural anisotropy.

Ferroelectric materials, characterized by switchable electric polarization, inherently feature a highly light-polarization dependent photoresponse (known as bulk photovoltaic effect, BPVE), presenting as promising alternatives in this portfolio.

In a study published in Angewandte Chemie International Edition, a research group led by Prof. LUO Junhua from Fujian Institute of Research on the Structure of Matter (FJIRSM) of the Chinese Academy of Sciences demonstrated a BPVE-driven highly efficient polarized light detection based on a two-dimensional (2-D) trilayered hybrid perovskite ferroelectric.

The researchers found that a polar 2-D trilayered perovskite architecture was adopted with a distinct spontaneous polarization of ~2.8 μC/cm2 and a suitable optical bandgap of ~2.71 eV. Superior BPVE was shown with a near-bandgap photovoltage of ~ 2.5 V and a high on/off switching ratio of current (~ 104).

This angle-dependent photoresponse is ascribed to the inherent light-polarization dependence of superior BPVE, which arises from the optical rectification effect of ferroelectrics upon light irradiation, distinguishing from that of all the known polarized light detectors.

Besides, a polarization ratio was exhibited as high as ~15, which is far more beyond than those of reported devices based on nanowires and anisotropic 2-D materials.

This BPVE-driven polarized light detection is unprecedented, which opens up a new way towards highly efficient polarized light detection by leveraging the light-polarization dependence of the BPVE in 2-D multilayered hybrid perovskites., a research group led by Prof. Luo Junhua from Fujian Institute of Research on the Structure of Matter (FJIRSM) of the Chinese Academy of Sciences demonstrated a BPVE-driven highly efficient polarized light detection based on a two-dimensional (2-D) trilayered hybrid perovskite ferroelectric.

The researchers found that a polar 2-D trilayered perovskite architecture was adopted with a distinct spontaneous polarization of ~2.8 μC/cm2 and a suitable optical bandgap of ~2.71 eV. Superior BPVE was shown with a near-bandgap photovoltage of ~ 2.5 V and a high on/off switching ratio of current (~ 104).

This angle-dependent photoresponse is ascribed to the inherent light-polarization dependence of superior BPVE, which arises from the optical rectification effect of ferroelectrics upon light irradiation, distinguishing from that of all the known polarized light detectors.

Besides, a polarization ratio was exhibited as high as ~15, which is far more beyond than those of reported devices based on nanowires and anisotropic 2-D materials.

This BPVE-driven polarized light detection is unprecedented, which opens up a new way towards highly efficient polarized light detection by leveraging the light-polarization dependence of the BPVE in 2-D multilayered hybrid perovskites.


TRUNNANO (aka. Luoyang Tongrun Nano Technology Co. Ltd.) is a trusted global chemical material supplier & manufacturer with over 12 years' experience in providing super high-quality chemicals and Nanomaterials. Currently, our company has successfully developed a series of powder materials. OEM service is available. Our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Click on the needed products or send us an email to send an inquiry.

Say something
  • All comments(0)
    No comment yet. Please say something!
Tag: